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INTRODUCTION

Microscopic imperfections in graphite fiber epoxy composites
may be introduced during both fabrication and service, The tendency
of graphite fiber composites to fail in a quasi-brittle mode (as
defined by the absence of a substantial nonlinear region in the
stress-strain curve) makes these composites more sensitive than
many metals to microscopic imperfections, In fatigue, failure has
been described as being ""like sudden death; that is, the fatigue
failure occurs without any visible evidence of damage' [1]. Thus,
any means of nondestructively monitoring fatigue damage or predicting
fatigue behavior of graphite fiber composites is likely to enhance
their effective use. The purpose of this report is to present the
results of an experimental study to investigate the ultrasonic atten-
uation and velocity as a function of the fatigue state of a graphite
fiber composite subjected to transfiber compression-compression

loading.

Fatigue of Composites

Papers on fatigue of composites deal with a broad range of
topics including damage initiation and growth [2-5]; and the effects
on fatigue behavior of holes [5-8], loading frequency [6], notches

[7,9-12], environment [6,13-15], compression loading [9,16,17],

compression load excursion [18], and fabrication [19-22].




The majority of fatigue researcﬁ has been on tension-tension
fatigue of fiber-controlled specimens. However, in an attempt to
develop a fatigue failure theory, Sims and Brodon [23] dealt specif-
fcally with situations in which the matrix contributes significantly
to fatigue strength, Also, Hashin and Rotem [24] proposed a fatigue
failure criterion which in part is expressed in terms of data ob-
tained by fatiguing off-axis unidirectional specimens, Bevan [8]
found that [ihS/thS/O/O]s graphite epoxy laminates in compression or
tension fatigue sustained 80% of their static strength for 106 cycles
while [th/t45/9O/9O]S laminates sustained only about 60% of their
static strength fcr 106 cycles. He concluded that this percentage
difference was due to the matrix - controlled failure of the latter
laminates. Other attempts to relate static and fatigue strengths
include investigations by Ryder and Walker [18] who noted that resid-
ual static strength degraded rapidly due to fatigue cycling; Awerbuch
and HaHn [1] who observed that static strength decreased rapidly
immediately before fatigue failure in unidirectional graphite epoxy
composites; and Porter [25] who found that for a range of flaw types,
there exists a relationship between initial static strength and

fatigue strength.

NDE of Fatigue Damage and Ultrasonics in Composites

Adams et al. [26-29] have stated that changes in lower struc-
tural natural frequencies can be used to locate and roughly quantify
damage., Also, Schultz and Warwick [30] found a correlation between

the amount of fatique damage and the imaginary part of the composite




complex modulus. On the other hand, by observing changes in dynamic
mechanical properties, Nielsen [31] was not able to detect fatigue
damage in various filled polymers,

Based on the hypothesis that wave propagation efficiency is
affected by microstructure and microflaws, Vary et al. [32-34] have
proposed an ultrasonic quantity called the stress wave factor which
has been positively correlated with the tensile strength and the
interlaminar shear strength of graphite fiber composites. In testing
graphite fiber polyimide composites, Hayford et al. [35] correlated
the initial attenuation and the shear strength.

To our knowledge, there has been no work reported on the rela-
tionship between ultrasonic parameters and the fatigue state of
fiber reinforced composites. In fact, very little has been done in
this area for any material. Truell and Hikata [36] monitored atten-
uation changes as a function of the number of fatigue cycles on
various aluminum alloys. They concluded that the form of the
attenuation-fatigue cycles curve depended on the magnitude of the
stress, the cyclic frequency, and the mode of loading, Unfortunately,
there was no apparent attempt to correlate the attenuation with the
S-N curves of the various alloys. However, they were abfe to deduce
some general trends, the primary observation being that an increase
in attenuation always occurred prior to cyclic failure. The point
at which this increased attenuation occurred varied from 30% to

approximately 100% of the failure cycles.




EXPERIMENTS
Material

The specimens were unidirectional Hercules AS/3501-6 graphite
fiber epoxy composites. In order to introduce a range in the prop-
certies of the specimens, two laminates were fabricated with slightly
different procedures. The Hercules fabrication specifications [37]
prescribe the following temperatures: (1) a precure temperature of
135°C during which pressure is applied; (2) a cure temperature of
177°C; and (3) a postcure temperature of 177°C with no pressure.

One laminate (No. 1) was fabricated according to these specifica-
tions with the single exception that the precure temperature was
149°C, 14°C higher than the specified temperature. A second laminate

(No. 2) was fabricated exactly in accordance with the specifications.

Attenuation, Velocity and Fatigue Tests

The experiments consisted of alternately compression~compression
(C~C) fatiguing specimens and measuring their narrow band longitudinal
wave group velocity and attenuation properties. The velocity and
attenuation measurements were typically made at intervals of 3 x IOA
fatigue cycles. The specimens are sketched in Fig., 1 where the prin-
cipal directions are indicated. The attenuation and velocity measure-

ments were recorded at four narrow band center frequencies: 0.5 MHz,

1.0 MHz, 1.5 MHz and 2.0 MHz,




The specimens were subjected to sinusoidal compression~compression
fatigue along the Xy direction with a peak-to-peak stress amplitude

of © to —max
max 2

Tests were conducted for O at 0.20,, 0.ko_,

max f f
0.60f and 0.80f where Gf was the prefatigued static compressive frac-
ture stress. The value of O¢ used in computing the fatigue stress
levels always corresponded to the value of ¢ for the laminate from
which the specimen was machined. All tests were conducted at a

loading frequency of 30 Hz.

Equipment

A schematic of the through-transmission attenuation and velocity
measuring experimental system is shown in Fig. 2:* The transducers
were Acoustic Emission Technology (AET) FC-500 transducers and the
couplant was AET SC-6 resin. The peak-to-peak input voltage was
100 volts. A pressure of 2.5 x IO5 N/m2 (36 psi) was applied to the
transducer-specimen interface. As reported in [38], this pressure
exceeded the ''saturation pressure'', which is defined as the minimum
transducer-specimen interface pressure which results in the maximum
output signal amplitude, all other parameters being held constant.
The compression fatigue testing was conducted on a Baldwin Model

SF-1U Universal Fatigue Machine.

1.

More details of this system are given in [38],




RESULTS AND DISCUSSION

Laminate No. 1, as identified above, had a prefatigued static
compressive fracture stress of 145 MN/m2 and laminate No. 2 had a
prefatigued static compressive fracture stress of 180 MN/mz, Thus,
the 14°C change in the precure temperature produced a significant
effect on the prefatiqued static compressive fracture stress,

Nine specimens were randomly selected from laminate No, 1 and
three each were tested at 0.20, O.hof and 0.60f, respectively.

The group velocity was frequency-independent and was substantially
the same for all the specimens (2.4 x ]O3 m/sec, whereas the atten-
uation was frequency-dependent and varied significantly (to be
discussed below) from specfmen to specimen, Despite these differ-
ences, no change in either the attenuation or the group velocity of
individual specimens was revealed up to 106 cycles where the tests
were discontinued. Also, no fatigue fractures occurred and no
material degradation was visible under microscopic examination.

Twelve additional specimens from laminate No, 1 and three
specimens from laminate No. 2 were randomly selected and tested at
0.8Gf. As in the tests described above, the group velocity again
remained constant at 2.4 x lO3 m/sec. In general, the attenuation
of individual specimens at the four monitored frequencies increased
by 5% to 10% of their respective prefatigued values which is defined
as "initial attenuation''. This increase in attenuation, which

tended to be larger for specimens with higher initial attenuation,




e

often occurred within the first 50% of the fatigue life; however,

.no distinct trend was observed. Fig. 3 is a plot of the attenua-

tion at 2.0 MHz versus fatigue cycles for the specimens from
laminate No. 1. Attenuation versus fatigue cycles curves for

0.5 MHz, 1.0 MHz and 1.5 MHz display similar trends and are given
in [39]., It appears from these curves that the changes in attenua-
tion do not provide a precursor of fracture,

The initial attenuation, cycles to fatigue fracture, static
fracture stress and fabrication data for specimens tested at 0.80f
are summarized in the Table below. For laminate No. 1 the speci-
mens are ordered in accordance with the number of fatigue cycles to
fracture. None of the specimens from laminate No. 2 failed where
in accordance with [9], the fatigue limit was defined as 5 x 106
cycles. (However, as noted in the Table, one of the specimens was
returned to the fatigue machine and subsequently failed at 30.2 x 10
cycles,) In addition to the difference in O¢ for laminates No. 1
and No. 2 cited earlier, the differences in the initial attenuation
values for the two laminates are considerable.

The inverse relationship between prefatigued fracture stress
and initial attenuation described in [35] is consistent with the
data in the Table. Further, there appears to be a correlation
between initial attenuation and cycles to fracture. And, the corre-
lation improves with increasing wave frequency. At ultrasonic
frequencies of 1.5 MHz and 2.0 MHz, there appear to be ''upper cut-

of f'" initial attenuation values (~5.8 neper/cm at 1.5 MHz and




~9.4 neper/cm at 2.0 MHz), above which failure occurred either
during the static preload or before the dynamic load had reached

its steady-state value during the acceleration period (~2000 cycles)
of the fatigue loading. The "upper cut-off' value of ~9.4 neper/cm
is apparent in Fig. 4 where the initial attenuation at 2 MHz versus
cycles to failure for specimens from laminate No. 1 only is plotted.
The initial attenuation at 2 MHz versus cycles to failure for
specimens from laminates No. | and 2 is plotted in Fig. 5. Fig. 5
further suggests the existence of a '""lower cut-off'' value of atten-
uation, below which specimens may be screened for survival to the

fatigue limit.



CONCLUSIONS

Hercules AS/3501-6 graphite fiber epoxy composites were
alternately compression-compression fatigued and monitored using
ultrasonic longitudinal waves. A small change (14°C) in the pre-
cure temperature resulted in significant changes in the prefatigued
static compressive fracture stress Of, the initial attenuation and
the number of cycles to failure at O ax = 0.80f. The correlation
between prefatigued static fracture stress and initial attenuation
found in [35] is supported by the data obtained here. No changes
in attenuation or velocity as well as no fatigue fractures occurred
for specimens fatigued to 106 cycles at maximum stress levels at or
below O.60¥.

During C-C fatigue when Omax = 0.80f, there is generally a
5% to 10% increase in attenuation; however, this increase does not
appear to be a fracture precursor. It is important to note that

L

the attenuation measurements were intermittent at about 3 x 10" cycle
intervals and that the possibility of an attenuation precursor

within a few cycles of failure cannot be discounted. The initial
attenuation at 1.5 MHz and 2.0 MHz appears to be a good indicator

of the relative survivability fn the fatigue environment. There
appear to be ultrasonic frequency-dependent “upper cut-off' attenu-

ation values which define a minimal fatigue 1ife and ''lower cut-off"

attenuation values which define a fatigue life limit.
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